7 ways to create a Pandas DataFrame in Python
• 1 minThere are several ways to create a Pandas DataFrame. Here are a few examples:
From a dictionary
import pandas as pd
data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35]}
df = pd.DataFrame(data)
From a list of lists
data = [{'Name': 'Alice', 'Age': 25}, {'Name': 'Bob', 'Age': 30}, {'Name': 'Charlie', 'Age': 35}]
df = pd.DataFrame(data)
From a 2D Numpy array
import numpy as np
data = np.array([['Alice', 25], ['Bob', 30], ['Charlie', 35]])
df = pd.DataFrame(data, columns=['Name', 'Age'])
From a CSV file:
df = pd.read_csv('data.csv')
From an excel file
df = pd.read_excel('data.xlsx')
From a SQL query
import sqlite3
conn = sqlite3.connect('database.db')
df = pd.read_sql_query("SELECT * FROM table", conn)
You can also specify the index of DataFrame while creating it.
df = pd.DataFrame(data, columns=['Name', 'Age'], index=[1,2,3])
You can also create an empty DataFrame using the pd.DataFrame()
constructor and later add data to it using the various DataFrame methods like loc[]
, iloc[]
, append()
, insert()
, concat()
etc.